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Abstract. The challenge for biodiversity restoration and augmentation is to find
effective indicators for ecosystem management without discarding too much of
the complexity that contributes to functionality. Many technical challenges lie
ahead in setting up information measures to manage dynamically changing eco-
systems in the real world. It is expected that image analysis features such as
edge, texture, color distribution, etc. will provide clues, but methods to evaluate
their effectiveness in the context of integrated management have not been suffi-
ciently studied. Taking synecological farming (Synecoculture™) as a typical
example of complex ecosystem management, we investigate the initial steps
toward the construction of an evaluation model by incorporating image analysis
and empirical knowledge acquired by human managers. As a result, we showed
that it is possible to construct a model that connects the features of image analy-
sis and human subjective evaluation with consistency according to the level of
the evaluators and proposed a cycle that would refine both the evaluation model
and associated human capacity. We also presented an interface for utilizing col-
lective knowledge in ecosystem management using the proposed model and the
prospect of scaling up in conjunction with robotics.
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1 Introduction

Agroecology is concerned with the management of trade-offs between environmental
impacts and economic benefits in agricultural production. One of the challenges for
biodiversity restoration and augmentation is to find effective indicators for the man-
agement of complex ecosystems. However, real-world ecosystems are characterized
as open complex systems that are difficult to manage effectively with a few limited
indicators because the diversity of elements and complexity of interactions play im-
portant functional roles [1]. Diverse ecosystem functions are supported by biodiversi-



ty, which consists of at least three levels: genes, species, and ecosystem diversity. It is
difficult to measure all those interactions and to set unitary criteria of information to
manage the system in the presence of environmental variability [3] [4] [5].

Image analysis such as remote sensing and in-field picture recording such as citi-
zen science has the potential to capture diverse aspects of ecosystems at a relatively
low cost, but their effectiveness depends on the method of measurement, evaluation
and the database used. For example, the mainstream method for documenting species
diversity is species identification based on subjective human evaluation of photo-
graphs of species [6]. In addition, research aimed at ecosystem assessment have at-
tempted to combine remote sensing with multiple data on biodiversity and function-
ality through machine learning to calculate an integrated index of complexity (e.g.,
[7]). These are gaining credibility as a source of scientific information for conserva-
tion purposes, such as restoring natural ecosystems or assessing the impact of conven-
tional agricultural practices. However, as in situations typical of agroecology, they are
still insufficient for forecasting and managing small-scale ecosystems where humans
frequently intervene with diverse objectives, and where dynamic variability and local
specificity are high [3].

Synecological farming is one such example and it is an extreme form of agroecol-
ogy that constructs and utilizes a high degree of biodiversity. In this method, more
than 200 species of useful plants are mixed and densely grown in a small area of
about 1,000 sq.m. to create a highly diverse ecosystem. This farming method is de-
fined as an application of complex systems science to agroecology [8]. It can be inter-
preted as the augmentation of ecosystems by humans and has been shown to be effec-
tive in restoring and building useful and functional ecosystems beyond the natural
background state, especially in the semi-arid tropics [2]. On the other hand, much of
the practice is based on empirical knowledge from a farming manual [9] and direct
communication.

To develop synecological farming based on scientific collective knowledge as well
as human empirical knowledge, several studies have been conducted to integrate hu-
man subjective evaluation and objectively measurable indicators: A study in an urban
area has successfully extracted indicators that could be significantly used to promote
biodiversity, based on human assessments of biodiversity and sensor measurements of
soil composition that do not depend on human evaluation [3]. At a more rudimentary
level, in conjunction with image analysis, there are examples of the detection of dom-
inant plants that hinder the growth of useful plants and reduce their diversity in a field
[10], as well as the detection of vegetation cover and exposed topsoil [11]. These are
only results obtained under limited conditions with a considerable narrowing of the
target to be recognized and are insufficient as effective indicators for the comprehen-
sive management of ecosystems.

Other research is underway in robotics to assist management in synecological
farming [12]. The implementation of tasks such as driving, seed planting, weed prun-
ing, and harvesting was accomplished by a mobile robotic arm. In addition, a maneu-
vering system is developed to minimize plant damage due to contact with the robot on
the dense vegetation of a variety of plants on a synecological farm. Despite the recent
innovation of automation in conventional agriculture, it is technically challenging to
fully automate the system to recognize and evaluate the condition of the field with
high biodiversity. The open-field management of complex vegetation with the mix-



ture of a large number of crops and naturally occurring plants still requires the robot
to be operated remotely by a human operator.

Further advancing these research streams, the promotion of human ingenuity to-
wards the integration of highly internalized empirical knowledge with scientific ob-
jectivity will lead to the development of methodologies that provide an effective
foundation for managing open complex systems [13]. In this paper, we take syneco-
logical farming as an example of complex systems management in agroecology and
propose a method to build an effective and reproducible management model to
achieve augmentation of ecosystems by integrating subjective assessment and objec-
tive indicators based on image analysis. Since ecological situations dynamically
evolve in synecological farming along with the refinement of management knowledge,
it is necessary to employ an interactive framework in that human evaluation and im-
age analysis mutually improve each other, which requires the dynamical reconfigura-
tion of the model [14]. This article consists of an initial phase of such a workflow
towards the stepwise construction of an effective management model on the basis of
open systems science [1]. The inputs, outputs and function of the models developed in
sections 2-5 are summarized in the supplementary material [16]. The databases are
limited to case studies on a trial basis and are subject to future expansion.

2 Subjective and inter-subjective human evaluation of a
synecological farm

A 4-sq.m. vegetable garden in Machida, Tokyo, Japan, was operated according to
the Synecoculture™ manual [9] and 26 photographs were taken from 4 m above dur-

ing the period from May 2019 to January 2021 (Fig. 1, hereafter the farm M). A sub-
jective evaluation was conducted by 8 experienced persons with different periods of
practice of synecological farming, referring only to these photos. The evaluators were
divided into four levels based on the number of years they had been engaged in syn-
ecological farming and their experience: expert (1 person), advanced (1 person), in-
termediate (3 people, including one person who played a part in the management of
farm M), and beginner (3 people, including one person with no experience at all).
“Expert” was a person who had been engaged in the farming for more than 13 years
and had trained and produced many practitioners of synecological farming; “advanced”
was a person who had been engaged in the farming for more than 8 years; “intermedi-
ates” for 3 to 10 years; and “beginners” for less than 3 years.

The indicators of subjective evaluation were defined using the Visual Analog Scale
(VAS) scores, which were defined on a scale from 1 to 10 and used to assess human
subjective measures with an interval scale such as in web surveys [15]. The three
evaluation indicators were defined as follows:

1. Appraisal Score (AS): subjective evaluation of how good the field is in
terms of synecological farming. As a criterion, 1 refers to the condition of
the field that he/she thinks is not at all suitable for synecological farming,
and 10 refers to the condition that has achieved the highest degree of syneco-
logical farming imaginable.



2. Harvest Prediction (HP): subjective assessment of how much yield, includ-
ing future potential, could be expected from the plots in that image. The cri-
terion was defined as 1 being a field that was unlikely to yield any useful
plants, and 10 being the highest yielding field condition imaginable.

3. Management Grade (MG): subjective estimation of the degree to which
managers of the field in the image were proficient in synecological farming.
The evaluators were asked to respond by referring to the shape of the ridges,
the arrangement of plants, and whether appropriate management such as
thinning and harvesting had been done, as well as changes over time. The
criteria were: 1 to 2.5 is beginner, 2.5 to 5 is intermediate, 5 to 7.5 is ad-
vanced, and 7.5 to 10 is expert.

All evaluators self-evaluated their levels, and only one of them was concerned with
the management of farm M. By examining the correlations between these indicators,
it is possible to determine the degree to which intersubjective reproducibility is en-
sured between the ratings of each level. The results of the correlation analysis be-
tween the evaluation of one expert and the indicators averaged for each level from
beginner to advanced are shown in Table 1.
The average of three indicators (AS, HP, and MG) showed significant correlations

with an expert in the order of advanced, intermediate, and beginner averages. MG

June Sth, 2019
e

ecember 22th, 2019 muary 13th, 2020 Jeuary 19th, 2020

agust 10th, 2020 S = B Gctober 184

Navamber 151, 2020

Fig. 1. Date and the top view images of a synecological farm in Machida (farm M), 4 m.

Table 1. Correlation coefficients of VAS ratings (AS, HP, MG) between an expert vs. the aver-
age at each level of practitioners in synecological farming. The p-values of all Pearson Product-
Moment Correlation Coefficients of AS, HP, and MG were less than 0.01 with the test of no

correlation.
vs. Advanced(n=1)(A) | vs. Intermediates(n=3) (I) | vs. Beginners (n=3)(B) | vs. I&B(n=6) | vs. A&I&B(n=7)
Appraisal Score (AS) 0.74 0.86 0.89 0.90 0.90
Harvest Prediction (HP) 0.90 0.93 0.91 0.95 0.95
Management Grade (MG) 0.90 0.71 0.52 0.74 0.74
3 Indicator Average 0.85 0.83 0.77 0.87 0.86




alone showed the same tendency of correlations but not in AS and HP. In addition,
correlation values using the averages of the three indicators for the seven non-experts
showed the highest correlations for almost all indicators, suggesting the validity of
group knowledge rather than individual years of experience.

As shown in the results of Table 1, the analysis of subjective indicators can be used
to estimate competence compared to expert, while the internal model of the evaluator,
backed by knowledge and experience, remains a black box. Since subjective indica-
tors alone do not include objective criteria, it is impossible to determine quantitatively
any mistakes or biases that may have occurred. In fact, the model uses one expert as
the highest criterion for subjective evaluation and does not evaluate whether the col-
lective knowledge of the other seven could achieve more effective management. This
has been pointed out as a drift of intersubjectivity in subjective evaluation and tying it
to objective indicators is essential to remove the bias prevalent in collective
knowledge [13].

3 Objective classification of conventional and synecological
farms based on image analyses

In the management of synecological farming, the degree of established biodiversity is
an important indicator [5] [9]. On the other hand, in conventional farming methods
that are typically monoculture, the level of biodiversity in the field remains low and
there is dominant homogeneity in their landscapes [8]. Through image analysis of
these external differences, we attempted to extract features that estimate the degree of
achievement of synecological farming.

A total of 280 sq.m. of farmland in Oiso Town, Kanagawa Prefecture, Japan, was
operated according to the Synecoculture™ manual, along with a total of 235 sq.m. of
conventional farmland on the side. A total of 16 photographs was taken from directly
above with a drone over a five-month period from May to September 2021 (Fig. Oiso,
hereafter the farms O and C). The distance between farms O, C and M is about 26 km
and belongs to the same temperate agroclimatic zone. Farm O is further divided into
two parts: O1, 180 sq.m. managed with a diversity and quantity of seed that meets the
standards of the Synecoculture™ manual; and O2, 100 sq.m. with a seed quantity of
48.5% of the standard per unit area. The adjacent conventional farm C was divided
into two rectangular plots C1 (85 sq.m.) and C2 (150 sq.m.), which were photo-
graphed and analyzed in the same way. The reason for splitting C into C1 and C2 is to
capture only the productive surface in a rectangle, with as little extraneous material as
possible in the image. Therefore, a qualitative relationship of C1, C2<02<0O1 was
established empirically as the degree of achievement of synecological farming.

Using the programming language Python version 3.9.15, 241-dimensional image
features were designed from a set of basic libraries related to image analysis. The
library used and the variables set are listed in the supplementary material [16], which
mainly focused on the edge, texture, and color distribution of the images. The 16 pho-
tos in Fig. 2 were each divided into 100 parts, by dividing the image into 10 vertical
and 10 horizontal segments, creating a total of 1600 test data. Note that there is no
overlap between divided images. From this dataset, 80% of the divided images were
randomly selected to train Random Forest learning methods, and the percentage of



correct responses to the remaining 20% was examined using the Random Forest clas-
sifier with RandomForestClassifier() function in the “sklearn” library “ensemble”
class. We obtained a 91.2% overall accuracy as the output of the “accuracy_score”
function in the “sklearn” library “metrics” class for distinguishing C1, C2 from OlI,
02. Using the RandomForestRegressor() in the “sklearn” library “ensemble” class,
the coefficient of determination was 0.781. The target variable is given as 0: for con-
ventional and 1: for synecological farming plots. Hyperparameters of Random-
ForestClassifier() and RandomForestRegressor() are specified in the online supple-
mentary material [16].

Next, we examined what features have gained importance with the initial learning
step to assess the ecological plausibility. The five most important features with re-
spect to the output “feature_importances [ ]” of RandomForestRegressor() are listed
as follows:

May 16th, 2021 | Jun. 1st, 2021 \ Aug. 22th, 2021 | Sep. 13th, 2021
(a): Conventional farm 1 (C1), 85ni

(c): Synecological farm 1 (01), 180m

(d): Synecological farm 2 (02), 100ni

Fig. 2. Top view images of synecological (O) and conventional (C) farms in Oiso. (a): Conven-
tional farm 1 (C1), 85 m. (b): Conventional farm 2 (C2), 150 mi. (c): Synecological farm 1
(01), 180 mi. (d): Synecological farm 2 (02), 100 m.



1. "GLCMI1 _0 homogeneity," which represents the homogeneity of neighbor-
ing pixels
2. "plt seg area bmean - rmean," which represents the difference between the
mean values of red and blue components of the vegetation area
3. “edge fractal," which represents the fractal dimension of the detected bound-
aries of the whole image
4. "plt seg area hmode - smode," which represents the difference between the
mode hue and mode saturation of the vegetation area
5. "plt_seg area hue median," which represents the median value of the hue of
the vegetation area
These indices are related to the complexity of the vegetation shape and the diversity
of colors and can be considered as important characteristics to discriminate between
conventional and synecological farming, since they may reflect differences in the
level of biodiversity.

As a result, if the task is to discriminate between conventional farming and syneco-
logical farming as is the case with the certification of the farming method, the classi-
fication model is successfully trained with the small data, and the basis of discrimina-
tion can be clearly and easily shown as features in image analysis. On the other hand,
the generalization capacity and tuning need to be explored to examine the perfor-
mance of the model in wider and more ambiguous situations. Actually, it is more
difficult to find differences that are important for actual human management of syn-
ecological farming, such as the difference between O1 and O2, from image analysis
alone. It is necessary to search for features that increase the resolution of the model
and to provide more teacher data.

4 Integrated modeling of ecosystem management based on
inter-subjective objectivity

To construct a model that complements the features of image analysis and the subjec-
tive measures of human VAS scores (AS, HP, MG) in a consistent manner, we pro-
pose the "Integrated Inter-Subjective Objective Model (ISOM)" (Fig. 3). In this model,
even if there is bias or error in a person's subjective evaluation, the image features
serve as an objective anchor and can be corrected quantitatively. Furthermore, it is
possible to construct an improvement process that cycles between subjective and ob-
jective to weight the effectiveness of objective indicators according to a skilled per-
son's subjectivity and to judge the overall effectiveness of the model.

ISOM first takes the feature values obtained from vegetation images of the field and
additional information such as weather as objective data, and the human VAS scores
(AS, HP, MG) as subjective data, and trains a Random Forest regression model be-
tween the two, as schematized in Fig. 3 (a). By looking at the feature importance of
the trained model, we can estimate what features the evaluator is potentially utilizing,
but we cannot guarantee how reliable this is. Therefore, we use the evaluator's level
information (beginner, intermediate, advanced, expert) and weight the reliability with
such empirical knowledge by examining the correlation between the level information
and feature importance (b). Note that the results can also be interpreted by the nature
of the data features to see if empirical knowledge is consistently developed. The
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Fig. 3. Integrated Inter-Subjective Objective Model (ISOM). (a, b, ¢): Learning of and predic-
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Expansion of objective measurement and analytical framework.
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trained model can then estimate VAS scores (AS, HP, MG) from those features alone
for new field images (and associated weather information) in a way that reflects the
evaluator's level (c). The validity of the estimated results is interpreted considering the
actual field operation history (d). The findings will suggest the characteristics of the
database that should be expanded and new features that should be analyzed (e). It is
also expected that human empirical knowledge can be improved by referring to objec-
tive indicators, leading to the refinement of the subjective indicators of the VAS
method (f). Such an interactive framework between human and image analysis fol-
lows the methodology of open systems science [1] and is an attempt to encapsulate
the ever-changing complexity inherent in ecosystem management, which cannot be
simply addressed with a fixed set of features and/or without the distinction of human
competence. At the same time, a practical application such as the certification of the
farming method is supposed to assess the field starting from small initial datasets, in
many cases without prior knowledge on other practices, which fits the scope of the
initial cycle of ISOM. As ISOM develops through the repetition of feedback cycles
(a)-(f), the model is expected to acquire more generalization capacity to novel situa-
tions.

Examples of actual analyses for farms M and O (defined in sections 2 and 3, re-
spectively) are shown in Fig. 4 and 5, respectively. First, we trained ISOM using 8
people's subjective evaluation of farm M (Table 1) and 26 images (Fig. 1). The same
241-dimensional image features were used as in Section 3, which corresponds to the
process of Fig. 3 (a). From the trained ISOM, we obtained an estimated model that
approximates the internal model implicitly known by the evaluators in terms of image
features (Fig. 3 (b)). By choosing the level of the evaluator we want to approximate
and giving arbitrary top view images of vegetation, we can obtain estimates of the
three subjective ratings (AS, HP, MG) (Fig. 3 (c)). For the estimated output, the eval-
uation image was divided into 3x5=15 sections, and the VAS score estimates were
smoothly color-coded among the 15 sections. An example is displayed in Fig. 4.
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Fig. 4. ISOM outputs of VAS scores prediction (AS, HP, MG) for the evaluation of farm M.
The blue-yellow-orange-red color gradient represents the ISOM outputs learned from farm M.
Examples based on the picture of Aug. 30th, 2020, in Fig. 1.

The areas of attention and evaluation differ depending on the level of the evaluator.
Therefore, we analyzed the importance of image features for each evaluator's regres-
sion model, focusing on the degree of topsoil coverage by vegetation ("plt_seg"),
which is particularly important for synecological farming. The average importance of
"plt_seg" in the regression model trained on AS was 0.036 for expert and advanced,
0.166 for intermediates, and 0.179 for beginners. In the regression model trained on
HP, expert and advanced were 0.052, intermediates were 0.116, and beginners were
0.091. In the regression model trained on MGs, the importance scores were 0.002 for
expert and advanced, 0.008 for intermediates, and 0.209 for beginners. Overall, the
importance of topsoil coverage in the VAS evaluation tends to decrease with years of
experience in farming.

Next, to examine the degree of dependence on features other than topsoil coverage,
we examined the standard deviations of the top five feature importance values com-
prising the learned regression models. If the standard deviation is high, the evaluator
relies on specific features and tends to ignore the others, while if low, the evaluation
equally refers to all five features. The standard deviations for the regression model
trained on AS were 0.018 for expert and advanced, 0.053 for intermediates, and 0.55
for beginners. For the regression model trained on HP, the standard deviations were
0.014 for expert and advanced, 0.027 for intermediates, and 0.027 for beginners. For
the regression model trained on MG, the standard deviations were 0.025 for expert
and advanced, 0.118 for intermediates, and 0.096 for beginners. Overall, the standard
deviations of the five highest feature importance values tended to be higher with years
of farming experience, with the five features supporting the decision more evenly.

These results suggest that beginners rely more on easily discernible indicators such
as the degree of topsoil cover to make their evaluations, and that the others potentially
synthesize other diverse characteristics such as temporal development of images and
the forms of vegetation according to the post-survey interview, to make judgments as
their years of experience progress. This is qualitatively consistent with the process of
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Fig. 5. ISOM outputs of VAS scores prediction (examples of AS) for the evaluation of farm O1
(Top) and O2 (Bottom). The blue-yellow-orange-red color gradient represents the ISOM out-
puts learned from farm M with 8 evaluators. The red-dominant VAS prediction of Jun. 1. seems
to capture the effects of drought in O1. Examples based on the pictures in Fig. 2 (c, d).

deepening experiential knowledge of managing ecosystems by considering their di-
verse relationships in a holistic manner [9], which contributes to (d).

The ISOM learned in farm M was further applied to a larger-scale farm O (Fig. 5).
VAS scores (AS, HP, MQG) were estimated for each model on top view images taken
by drones in two areas: O2, where there is a full-time manager and sufficient seed
input and management, and O1, where the amount of seed input and management is
about half that of O2. Farm O1 is about 45 times larger and O2 is 25 times larger than
farm M to investigate the effectiveness of the model concerning the scale difference.
As a general result, the predicted VAS scores showed general superiority in O2 com-
pared to O1. We referred to meteorological data and management information for the
field to further assess the validity of the estimation results. One meteorological feature
was zero precipitation for the 5 days prior to the observation on June 1, 2021 (data not
shown). As a result, fields were dry and growth was poor in O1 than O2 with low
seed introduction and management frequency; ISOM predicted worse field conditions
on O1 for all indicators AS, HP, and MG for the Jun 1st, 2021, image which was con-
sistent with actual observations of managers.

As a subsequent effect of drought, useful plants declined, and weeds became dom-
inant in O1 during the summer months of August and September. However, the ISOM
output estimated higher VAS scores where weeds dominated and did not seem to be
able to determine crop growth status. To improve this, it may be necessary to consider
further incorporation of features related to the number of crop species and their cover-
age. In fact, we tentatively trained ISOM on farm M and O images with the number of
crop species as additional information and were able to estimate the number of useful
plant species with an estimation error of 20% and a coefficient of determination of
0.87 for the farm O input images, which were chosen differently from the training
data (results not shown).
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These processes are consistent with the dynamical assessment of ecosystems based
on open systems science [4] [14] and the methodology for capturing significant
changes in dynamically changing vegetation succession [3]. In other words, the model
is open to constant updating to become more effective as the surrounding environ-
ment changes, such as climate change, and as managers' empirical knowledge evolves.

5 Interfaces for collaborative robotics

In Table 1, the group that averaged beginners and intermediate members had a higher
correlation with the VAS ratings of AS and HP by an expert than an advanced mem-
ber. Also, a group averaging one advanced member, intermediates, and beginners
showed greater correlation with an expert on AS, HP, and averaged scores of the three
VAS measures than did an advanced member alone. This suggests that the develop-
ment of collective knowledge might be more effective in managing synecological
farming than the deepening of individual experiential knowledge. More generally, it
may be possible that supporting group consensus may be more effective than individ-
ual capacity building in overcoming the difficulties of managing complex ecosystems
in agroecology. Additionally, in determining whether a field meets the criteria for
certification of synecological farming, quality could be assured not only using objec-
tive data but also through a combination of inter-subjective review systems by multi-
ple evaluators. In particular, the time scale of the referenced features extends as the
level of the evaluator increases to advanced or expert, which is consistent with empir-
ical knowledge where perceptions evolve to include the history of ecological devel-
opment.

To assist in this cycle of synergistic enhancement of collective and individual ex-
periential knowledge, we considered an interface that provides feedback of the VAS
score predicted from ISOM to the individual VAS score (Fig. 6). In this way, the
evaluator can recognize under what circumstances his or her VAS evaluation deviates
from the VAS estimation by the ISOM that mimics collective knowledge and can
learn what new features to pay attention to by examining the image features that con-
tribute to the difference.

The formation of collective knowledge is expected to develop on a larger scale
through automation using robotics. Even for complex ecosystems such as synecologi-
cal farming, robotic management techniques are being developed for areas where
vegetation is restricted to a certain height, such as the space under solar panels [12].
Capturing and processing images in conjunction with robotics can scale up the pro-
cesses (a), (b), (c), and (e) in Fig. 3, and with humans contributing even more deeply
to (d) and (f), the development of synergy between human empirical knowledge and
robot performance can be expected.
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(a): farm 01 Top: Original Image Bottom: Predicted AS
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Fig. 6. Estimation of VAS scores on farm O with ISOM learned on farm M and feedback to
human evaluation. Prediction of VAS scores (AS, HP, MG) with ISOM learned from the sub-
jective evaluation of 8 evaluators on farm M (the same model as in Fig. 5) are shown with
different colormaps in (a): farm O1 and (b): farm O2. The color gradient was adjusted to create
two blue and two red areas in each image and is different from Fig. 5. Additionally, an evalua-
tor of intermediate level separately evaluated these images by marking two highest and lowest
areas of arbitrary size with blue and red circles, respectively. The number of agreements be-
tween the prediction with ISOM (blue, yellow, orange, and red areas) and the human evaluation
(blue and red circles) is shown in (c).

6 Conclusions

In this paper, we proposed a model (ISOM) to connect features of image analysis and
human evaluation in a consistent manner, using an example of ecosystem manage-
ment in synecological farming to detect the information necessary for sustainable
management of highly diverse ecosystems. ISOM combines subjective and objective
indicators in a complementary manner, enabling the mutual evaluation between the
development of empirical knowledge and its objective support. Through the analysis,
the open-ended development cycles between human ecological discernment and the
discovery and expansion of effective features were suggested, in which interfaces for
effective sharing and utilization of collective knowledge and an automatic data expan-
sion process using robotics would help scale-up.
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