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Abstract. Coupled logistic equations and their discretizations are important mod-
els in ecology and complex systems science. However, the chaotic dynamics pro-
duced by these nonlinear dynamical systems are lumped together, and the math-
ematical correspondence between continuous and discrete-time systems is not 
sufficiently clear. The method of ultradiscretization, which has recently been de-
veloped in the analysis of nonlinear integrable systems, can discretize both inde-
pendent variables such as time and dependent variables such as time-evolving 
quantities in the dynamical system, while providing an analytical basis for the 
mathematical correspondence with the original continuous system. In this paper, 
we first show that the ultradiscretization of the logistic equation has the same 
form as that of a sigmoidal map, which cannot be derived from a customarily 
used logistic map. Consequently, recursively coupled systems of sigmoidal func-
tions, such as those employed in neural networks, emerge as new candidate mod-
els for various dynamics important in agroecology, where both autonomous dy-
namics of ecosystems and human intervention could be represented. We then ex-
plore qualitative correspondences between neural networks and various modes of 
farming, including chaotic behavior, and propose an ultra-discretized model that 
serves as the essential underlying element. The newly proposed model has math-
ematical connectivity with logistic and tent maps, as well as Holling’s disc equa-
tions, providing interpretations rooted in ecology and neuroscience. The compre-
hensive results provide a new perspective for extracting the essence of complex 
agroecology via computation, which has the potential to link the properties of 
deep learning being studied in neural networks to the complexity of ecological 
management. 

Keywords: Logistic Map, Chaotic Neural Network, Globally Coupled Map 
Lattices, Ultradiscretizaion, Holling’s Disc Equations, Chaotic Itinerancy. 

1 Introduction 

The logistic equation and its coupled Lotka-Volterra equations are a major source of 
modeling in ecological studies (e.g., [1]). Coupled logistic maps in the form of discrete-
time difference equations are also important dynamical systems in understanding the 
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high-dimensional deterministic chaos in complex systems, such as Globally Coupled 
Maps and Coupled Map Lattices (GCML) [2]. Although discrete-time dynamical sys-
tems have been a mathematically informative platform for the analysis of non-linear 
integrable systems, such as discrete-time solitons [3], the methodology on the deriva-
tion of the difference equations from the original differential equations is considered 
decisive for the feasibility of the analysis; the transformation from continuous to dis-
crete-time dynamical systems should preserve essential dynamics that constitute the 
complexity of the original model. 
 For example, the logistic equation and its discretized logistic map are usually 
described as follows, for the one-dimensional real variable x(t) with time t, environ-
mental capacity K and strength of self-feedback r:   

 Logistic equation	𝐿#𝑥(𝑡)(: !"($)
!$

= 𝑟𝑥(𝑡) +1 − "($)
&
.   (1) 

 Logistic map: 𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑟𝑥(𝑡) +1 − "($)
&
.  (2) 

However, the logistic map (2) is known to exhibit complex bifurcation of periodicity 
and chaotic behavior along with the augmentation of the parameter r [4], which is not 
observed in the continuous-time model (1). Although the logistic map is useful for in-
vestigating coupled chaotic systems, such dynamics could be considered as mathemat-
ical by-products resulting from the naive discretization apart from the original ecolog-
ical implication of the logistic equation. For equation (2) to rigorously reproduce the 
original solution known as the logistic/sigmoid curve, one needs to employ the follow-
ing model proposed by Morishita [5]: 

 Morishita’s logistic map: 𝑥(𝑡 + 𝛥𝑡) = ('())"($)
'(*"($)

, (3) 

where Δt > 0 is the time difference, 𝑎 = 𝑒+,$ − 1 and 𝑏 = 𝑎 𝐾⁄ .  
The model (2) and (3) could be integrated with a generalized discretization form 

of (1), using the time difference l = (m-1) τ with a positive real number 0 < 𝜏 and nat-
ural number m, such that  

 𝑥(𝑡 + 𝛥𝑡) = 𝑥(𝑡) + 𝑟𝛥𝑡	 9𝑥(𝑡) − '
&
	𝑥(𝑡)	𝑥(𝑡 + 𝑙); + 𝛰(𝜏).  (4) 

Since the sigmoid curve 𝑥(𝑡) has the upper bound 𝐾, so is the variation in (4), i.e., for 
a sufficiently large 𝜏 , =𝑥(𝑡 + 𝛥𝑡) − 𝑥(𝑡) − 𝑟𝛥𝑡 9𝑥(𝑡) − '

&
	𝑥(𝑡)	𝑥(𝑡 + 𝑙);> 𝜏? < 𝐾 

holds. By taking the infinitesimal limit 𝜏 → +0, (4) converges to (1) when l = 0 and	
𝛥𝑡 → +0; to (2) when l = 0 and	𝛥𝑡 = 1;	and	to	(3)	when	l = 1 and 𝛥𝑡 ≪ 1. (Note that 
the actual dynamics of (3) perfectly coincide with the trajectory of (1) with all ranges 
of 𝛥𝑡 > 0, which is not fully expressed in (4) but these differences converge to the same 
ultra-discretized model (10).) This means that the choice of the discretization parame-
ters such as l and 𝛥𝑡 could influence the nature of discretized dynamics which may not 
preserve the original characteristics, especially in non-linear systems.  
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Recently developing analysis on ultradiscretization deals with such challenges 
to extract essential systems that are discrete not only in time but also the values of 
variables that are representative of the original complexity and mathematical invariants 
(e.g., [6][7]). Since the numerical simulation of non-linear dynamical systems with sim-
ple discretization such as the Euler method from (1) to (2) may profoundly alter the 
characteristics of the model, seeking universal mathematical structure among differen-
tial equations, difference equations and ultra-discretized digital equations is essential 
for the proper computation [8]. 

2 Ultradiscretization of logistic models 

2.1 Ultradiscretization of the logistic equation 

We consider the ultradiscretization of the logistic equation starting from the rigorously 
discretized form (3) with 𝛥𝑡 = 1 and a < K. We focus on the sigmoidal growth of x(t) 
starting from 𝑥(0) > 0 and converges to K. Using an arbitrary parameter 𝜀 > 0, we 
consider the following transformation from 𝑥(𝑡) to 𝑋(𝑡): 

𝑥(𝑡) = 𝑥(0)𝑒
!(#)%!(&)

'    (5) 

1 + 𝑎 = 𝑒
(
' , R > 0 (6) 

𝑏 = 𝑒
%)
' , 𝑄 > 0 (7) 

We then obtain 

 𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝑅 − 	𝜀	 log 9𝑒
&
' + 𝑒

!(#)%)%!(&)%'	 +,-.(&)
' ;, (8) 

which by taking the limit 𝜀 → +0, converges to the ultra-discretized form 

 lim
-→(/

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝑅 −	max[0, 𝑋(𝑡) − 𝑄 − 𝑋(0)].  (9) 

We choose the representative values A and B (0<A<K, 0<B<K, A+B=K) for the pa-
rameters R and 𝑄 that formally express the convergence to the environmental limit K 
as follows: 

 𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝐴 −	max[0, 𝑋(𝑡) − B].  (10) 

From the relation between (3) and (4), this result coincides with the ultradiscretization 
of the limited case of (4) with the specification of parameters 𝛥𝑡 = 1, l=1 and τ → +0. 
The relationships between equations (1), (3) and (10) are depicted in Fig. 1. 

 
2.2 Ultradiscretization of the neuron model with a sigmoid function 

We consider another discrete-time system based on a sigmoid function commonly used 
in neural network models and show that the ultra-discretized dynamics coincide with 
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that of (10). Let us consider the sigmoid function 𝑆(𝑥; 𝑟, 𝜃, 𝐾) ≔ 𝐾 #1 + 𝑒0+("01)(⁄  
with the parameters 𝑟, 𝜃, 𝐾 > 0, which is known as a basic neuron model with K=1 and 
also as the solution of (1) in the form of 𝑥(𝑡) ≔ 𝑆(𝑡) = 𝐾 #1 + 𝑒0+($01)(⁄ , where 𝜃 ≔
	log(𝐾 𝑥(0)⁄ − 1) 𝑟⁄ .  

We consider a simple element of discrete-time system conventionally used in 
the self-recurrent neural network models with the time-dependent difference term 
𝛥𝑥(𝑡) > 0 such as  

𝑥(𝑡 + 1) = 𝑆#𝑥(𝑡)( 

 = 	𝑥(𝑡) + 𝛥𝑥(𝑡).  (11) 

Using (3), it is known that 

 𝑆(𝑡 + 𝛥𝑡) = ('())2($)
'(32($)

 ,  (12) 

and substituting 𝑡 and 𝛥𝑡 with 𝑥(𝑡) and 𝛥𝑥(𝑡), respectively, we obtain 

 𝑆#𝑥(𝑡) + 𝛥𝑥(𝑡)( = 𝑆#𝑥(𝑡 + 1)( = ('()/)24"($)5
'(*/24"($)5

 ,  (13) 

where 𝑎6 = 𝑒+,"($) − 1 and 𝑏6 = 𝑎6 𝐾⁄ . Note that 𝑎6 and 𝑏6 are dependent on 𝑡 and not 
on 𝛥𝑡. Through the transformation 𝑡 + 1 → 𝑡, we derive a simpler form 

 𝑥(𝑡 + 1) = ('()/)"($)
'(*/"($)

 . (14) 

We apply the transformation 𝑥(𝑡) = 𝑒
!(#)
'  for the ultradiscretization, which transforms 

(14) into the following: 

 𝜀 log 𝑒
7($(')

-8 =𝜀 log =(1 + 𝑎6)𝑒
7($)

-8 > − 𝜀 log =1 + 𝑏6𝑒
7($)

-8 >.  (15) 

Performing the parameters transformation 𝑎" = 𝜀6 log(1 + 𝑎6)  and 𝑏" = −𝜀" log 𝑏6 
with 𝜀6 > 0 and 𝜀" > 0, and taking the limit 𝜀 → 0 on both sides, we obtain 

 𝑋(𝑡 + 1) = 𝑋	(𝑡) + 𝑎" −	𝑚𝑎𝑥`0, 𝑋(𝑡) − 𝑏"a. (16) 

(i) In the case of 𝑋(𝑡) ≤ 𝑏", (16) becomes 𝑋(𝑡 + 1) = X	(t) + 𝑎". By defi-
nition, 𝑎" = 𝜀6𝑟𝛥𝑥(𝑡), therefore by taking 𝜀6 ∝ 𝛥𝑥(𝑡)0', (16) can be de-
scribed as 𝑋(𝑡 + 1) = 𝑋	(𝑡) + 𝐴 with an arbitrary constant A > 0. 

(ii) In the case of 𝑋(𝑡) ≥ 𝑏" , (16) becomes 𝑋(𝑡 + 1) = 𝑎" + 𝑏" =
	𝜀" log +𝐾 '()/

)/
. by assuming 𝜀6 = 𝜀". Then by taking 𝜀" = 𝐵

log(𝐾 𝑎6⁄ )?  

with 𝐵	 = 	𝐾 − 𝐴	 > 	0, 𝑋(𝑡 + 1) = 𝐾 remains invariant for all t. 

Based on the operations (i) and (ii), taking the limit 𝜀6, 𝜀" → 0 on (16) results in 

 Ultra-discretized sigmoidal map	𝑆6#𝑋	(𝑡)(: 
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 𝑋(𝑡 + 1) = 𝑋	(𝑡) + 𝐴 −	𝑚𝑎𝑥[0, 𝑋(𝑡) − 𝐵],  (17) 

which exactly coincides with (10). This means that the logistic equation (1) and the 
self-recurrent sigmoidal map (11) preserve the same mathematical structure in the ultra-
discretized form. From this perspective, it may be more appropriate to use the combi-
nation of the sigmoidal map (11) than the logistic map (2) to numerically simulate the 
mathematical features of coupled logistic equations. The relationship between (11) and 
(17) is depicted in Fig. 1. 

 
Fig. 1. (a), (b), (c): Relationships between the equations L(x(t)) (1), a sigmoid curve x(t)=S(t) and 
its ultradiscretization (10). (d), (e): relationships between the equations (11) and its ultradiscreti-
zation (17). (f): discrete-time development of the ultra-discretized models (10) and (17). Red 
arrows represent ultradiscretization, and blue arrows correspond to the same coordinate transfor-
mation. Example parameters were chosen as 𝑟 = 1, 𝑥(0) = 1 for (a) and (b); 𝑟 = 0.2, 𝑥(0) =
13.83 for (d); and 𝐾 = 100, 𝐴 = 15, 𝑋(0) = 1 for (c), (e) and (f).  

2.3 Analogy between neural network and agroecological dynamics 

Considering the self-recurrent coupled sigmoidal maps as an essential discrete model 
of the logistic equation (1) opens a way to reinterpret the neural networks from the 
perspective of the ecological model of interacting species. In this section, we explore 
ways to express autonomous ecological dynamics and human interventions for its man-
agement in reference to discrete-time neural network models such as [9], based on the 
general modalities used in a wide range of farming methods reviewed in [10].  
 Crop and weed interactions are important factors in the community dynamics 
of agroecological systems, which entail symbiotic and competitive relationships that 
promote and hinder the growth of each species and produce a variety of succession 
dynamics. The most intuitive way to express such complex interactions is to incorporate 
the connection functions 𝑉 ≔ =𝑣:; +𝑥;(𝑡); 𝑥:(𝑡).>

:,;='

>
 between sigmoidal maps, such 

as  
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 𝑥:(𝑡 + 1) = 𝑆 +∑ 𝑣:; +𝑥;(𝑡); 𝑥:(𝑡).>
;=' ; 𝑟: , 𝜃: , 𝐾:.,  (18) 

where 𝑆(𝑦;	𝑟: , 𝜃: , 𝐾:) ≔ 𝐾: #1 + 𝑒0+0(?010)(⁄ , and 𝑣:; +𝑥:(𝑡), 𝑥;(𝑡). > 0 represents fa-

cilitation and 𝑣:; +𝑥;(𝑡); 𝑥:(𝑡). < 0 inhibition from 𝑥;(𝑡) to 𝑥:(𝑡 + 1) using 𝑥:(𝑡) as a 
parameter. In ecosystems, 𝑣:;(∙;∙) are generally non-linear that are typical in allelopa-
thic interactions between crops and weeds [11], but the simplest linearized form 
𝑣:; +𝑥;(𝑡); 𝑥:(𝑡). ≈ 𝑤:;𝑥;(𝑡)  converges to the connection matrix of a conventional 
neural network (e.g., [9]), which provides 

 𝑥:(𝑡 + 1) = 𝑆#∑ 𝑤:;𝑥;(𝑡)>
;=' ; 𝑟: , 𝜃: , 𝐾:(.  (19) 

Here, the variables {𝑥:(𝑡)}:='>  could represent the growth rate of n different individual 
organisms, as well as the population size of n species, in the latter case 𝑤:; can be con-
sidered as the mean-field approximation of the total interactions between the j-th and i-
th species.  
 The connection matrix 𝑊 ≔ q𝑤:;r:,;='

>
 can represent facilitative (𝑤:; > 0) 

and competitive (𝑤:; < 0) effects from 𝑥;(𝑡) to 𝑥:(𝑡 + 1), and the asymmetry in 𝑊 
can also reproduce periodic vegetation succession patterns in an analogous way to the 
dynamical associative memory in neural network (e.g.,[12]). The dynamical modifica-
tion of 𝑊 could also serve as an evolutionary model of the community structure.  
 There exist ecological interactions that affect the environmental capacity 𝐾: 
more than the inter-species interactions 𝑤:; in (19), which are classically known as the 
physiological optimum of a single species and the ecological optima of a community 
of multiple species [13]. Such effects could be incorporated as 𝐾:(𝐸t) with the mean 
environmental condition 𝐸t, such as 

 𝐾:(𝐸t) ∶= 𝐾:6𝛮#𝐸t; 𝜇: , 𝜎:
@A$(,  (20) 

where 𝐸t represents the mean environmental parameters that affect plant growth such 
as temperature, humidity, luminosity, etc., and 𝛮(	∙	; 𝜇: , 𝜎:B) is the probabilistic density 
function of a normal distribution with the mean 𝜇: 	and standard deviation 𝜎:

@A$. The 
superscript opt specifies the physiological (phy) and ecological (eco) optimizations, 
which is generally known as 𝜎:

AC? <	𝜎:DE@, i.e., the relative superiority of ecological 
optimum in a marginal environment [10]. For the practical fitting of the model, we can 
choose the constant 𝐾:6  according to the unit of measurement such as biomass quantity. 

Ecosystems dynamics are dependent on the past states and often exhibit hys-
teresis such as regime shifts with inherent mechanisms [14]. A general form to incor-
porate time-delayed feedback in (19) can be expressed as the following: 

 𝑥:(𝑡 + 1) = 𝑆 +∑ 𝑤:;𝐻 +q𝑥;(𝑡 − 𝑑)r!=/
$

.>
;=' ; 𝑟: , 𝜃: , 𝐾:..  (21) 

The hysteresis function 𝐻(∙) can be approximately decomposed to each past time step 
using multiple linear regression such as  
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 𝐻 +q𝑥;(𝑡 − 𝑑)r!=/
$

. ≈ 𝑥;(𝑡) + ∑ ℎ′(𝑑)𝑥;(𝑡 − 𝑑)$
!=' ,  (22) 

with a series of coefficients {ℎ′(𝑑)}!='$ . If we assume a gradual decrease of the past 
influence, such as ℎ′(1) > ℎ′(2) > ⋯ > ℎ′(𝑡), one of the simplest and plausible ways 
to interpret ecologically important situations (e.g., allelopathic residual effects in the 
soil [15]) is to express them as the exponential decay such as ℎ′(𝑑) ≔ ℎ!  with the n-
th power of the attenuation coefficient 0 ≤ ℎ < 1, which provides 

 𝑥:(𝑡 + 1) = 𝑆#∑ 𝑤:; ∑ ℎ! 𝑥;(𝑡 − 𝑑)$
!=/

>
;=' ; 𝑟: , 𝜃: , 𝐾:(. (23) 

Among the time-delayed feedbacks in (23), self-recurrent negative feedback is espe-
cially important to explain the hysteresis such as monocropping failure or replant diffi-
culty (e.g., [16][17]), which can be expressed as the refractory term of the i-th element 
that is introduced in a chaotic neuron model [9]: 

 𝑥:(𝑡 + 1) = 𝑆#∑ 𝑤:; ∑ ℎF!𝑥;(𝑡 − 𝑑)$
!=/

>
;=' − α∑ ℎ+!𝑥:(𝑡 − 𝑑)$

!=/ ; 𝑟: , 𝜃: , 𝐾:(,  (24) 

where α is the scaling coefficient of the refractoriness, and the attenuation coefficient 
ℎ is distinguished between the feedback and refractory terms as ℎF  and ℎ+ , respec-
tively. The refractory term can also represent context-dependent human interventions 
such as thinning harvest, density-dependent weed & pest control (e.g., [18]) and other 
management strategies that consider the growth history of the target 𝑥:. 

A more general and systematic form of human interventions for the manage-
ment, as well as external periodic factors such as seasonal microclimate changes, can 
be additionally incorporated as the external inputs term to (24), such that 

 𝑥:(𝑡 + 1) = 𝑆(∑ 𝑢:; ∑ ℎD!𝐸;(𝑡 − 𝑑)$
!=/

G
;='  

+∑ 𝑤:; ∑ ℎF!𝑥;(𝑡 − 𝑑)$
!=/

>
;='  

−α∑ ℎ+!𝑥:(𝑡 − 𝑑)$
!=/ ; 𝑟: , 𝜃: , 𝐾:),  (25) 

with the interaction matrix 𝑈 ≔ q𝑢:;r between the j-th external input 𝐸; (𝑗 = 1,… ,𝑚) 
and the i-th element 𝑥: and its attenuation coefficient ℎD *. 
 The model (25) is one of the simplest linear approximations of complex eco-
logical interactions with the structure of coupled sigmoidal maps, which converges to 
a neural network with intermittent chaotic behavior [9][12]. We analogically call it the 
Chaotic Ecological Network (CEN) and analyze its dynamics from agroecological per-
spectives in the following section. 
 

2.4 Analysis of the dynamics in Chaotic Ecological Network 

Let us simulate example dynamics of CEN (25) with the parameters 𝑛 = 3,𝐾: = 𝐾 =
100, 𝑟: = 0.2, 𝜃: =	 log(𝐾: 𝑥:(0)⁄ − 1) 𝑟:⁄ = 22.9756, ℎD = ℎF = 0.1, and the initial 

 
* For simplicity, U was defined as a unit matrix in the simulations of Fig. 4.  
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values with a relative saturation of 𝑥'(𝑡) such that #𝑥'(0), 𝑥B(0), 𝑥H(0)( = (𝐾, 0, −𝐾). 
The values of 𝐸; , α and ℎ+ differ and are specified in each simulation. We define the 
interaction matrix 𝑊 = q𝑤:;r:,;='

>=H
 as follows, to set the ecological niches of n=3 differ-

ent species (or organisms) as three stable fix points represented with the patterns 𝐾 ∙
#𝑝'I

/ , 𝑝BI
/ , 𝑝HI

/( , where q𝑝:=',B,HI/=' r = (1,0,0), q𝑝:=',B,HI/=B r = (0,1,0)  and q𝑝:=',B,HI/=H r =
(0,0,1), based on the definition of the Hebbian learning rule in neural networks [12]:  

 𝑤:; =
'
H
∑ #2𝑝:I

/ − 1(#2𝑝;I
/ − 1(H

I/=' .  (26) 

Note that (26) only expresses competitive relationships among 𝑥:(𝑡), because 𝑤:; < 0 
if 𝑖 ≠ 𝑗. The phase diagrams with the analysis of periodicity, stability and converging 
niches of the dynamics are shown in Fig. 2, with varying ranges of the refractoriness α 
and ℎ+ .  

 
Fig. 2. Periodicity (Left), stability (Middle) and converging niche patterns (Right) of CEN. Re-
fractoriness parameter ranges ℎ" = [0, 0.5] , α = [0, 10000]  were used for the simulations, 
without external inputs i.e., 𝐸# = 0. After cutting t=10000 initial steps, the dynamics of addi-
tional t=1000 steps were classified with the colors representing periodicity (Left, according to 
the color bar); positive and negative maximum Lyapunov exponents with red and blue, respec-
tively (Middle, according to the calculation method in [12]); and the mean value patterns of 𝑥$(𝑡) 
(Right) that showed the dominance of 𝑥%(𝑡)with blue (the mean values of 𝑥%(𝑡) ≥  𝐾 2⁄ , 
𝑥&(𝑡)	and	𝑥'(𝑡) < 	𝐾 2⁄ ) and the inferior and competitive growth patterns with red (the mean 
values of 𝑥%(𝑡), 𝑥&(𝑡)	𝑎𝑛𝑑		𝑥'(𝑡) < 𝐾 2⁄ ). 

Based on the analysis in Fig. 2, it is possible to classify most of the simulated dynamics 
of CEN into four Areas on the ℎ+ − 	α plane: 
 
Area 1.  Monoculture dominant condition, where a single crop 𝑥'(𝑡) continuously and 

stably grows more than the others: Periodicity = 1; maximum Lyapunov expo-
nents < 0; mean 𝑥'(𝑡) is dominant (≥ 𝐾 2)⁄  over 𝑥B(𝑡) and 𝑥H(𝑡)	(< 𝐾 2⁄ ). 

Area 2. Monoculture in competition, where a single crop 𝑥'(𝑡) continuously and stably 
grows but at an inferior level and in strong competition with the other species: 
Periodicity = 1; maximum Lyapunov exponents < 0; mean 𝑥'(𝑡), 𝑥B(𝑡) and 
𝑥H(𝑡) remain inferior to 𝐾 2⁄ . 
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Area 3. Rotational succession, where multiple species form stable limit cycles of var-
ying periods: Periodicity > 1; maximum Lyapunov exponents < 0; mean 𝑥'(𝑡), 
𝑥B(𝑡) and 𝑥H(𝑡) remain inferior to 𝐾 2⁄ . 

Area 4. Chaotic itinerancy, where multiple species follow unstable chaotic trajectories 
among different niche patterns: Periodicity > 1000; maximum Lyapunov expo-
nents > 0; mean 𝑥'(𝑡), 𝑥B(𝑡) and 𝑥H(𝑡) remain inferior to 𝐾 2⁄ . 

 
For simplicity, we considered 𝑥'(𝑡) as the growth of the target crop species, 𝑥B(𝑡) and 
𝑥H(𝑡) as the competing crop and/or weed species. The dominance of the target crop in 
Area 1 and the inferior growth in the other Areas qualitatively reflect the magnitude 
relationship of single-crop productivity between physiological and ecological optima 
[10]. The complex behaviors of Areas 3 & 4 may correspond to the diversity of vege-
tation succession important in agroecology, which can be leveraged with human oper-
ations for the augmentation of biodiversity and ecosystem functions [19]. Typical dy-
namics of the four Areas are simulated in Fig. 3. 

 
Fig. 3. Typical dynamics of Areas 1-4. Simulated parameters (ℎ" , α)	are: (0.1, 0) for Area 1, 
(0.48, 300) for Area 2, (0.155, 3400) for Area 3, and (0.15, 7000) for Area 4. The “perturbed” 
species take the initial values (𝐾, 0,−𝐾) + 1 that are slightly different (+1) from the other spe-
cies. The example of Area 1 represents the successful dominance of a single crop, while that of 
2 corresponds to the inferior growth of multiple species under strong competition. The example 
of Area 3 shows high periodicity (more than 1000) but stability against the perturbation, while 
that of 4 follows chaotic dynamics where initial perturbations are amplified to the system level. 

Although the interaction matrix W is set to be only competitive in (26), the model can 
still introduce the effect of symbiosis with the use of (20). We can also incorporate 
symbiotic relationships by modifying the W itself, such as by defining a new interaction 
matrix 𝑊′ = q𝑤:;6 r:,;='

>=H
 : 

 𝑤:;6 =
'
B
∑ #2𝑝′:I

/ − 1(#2𝑝′;I
/ − 1(B

I/=' ,  (27) 
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where q𝑝′:=',B,HI/=' r = (1,1,0)	and	q𝑝′:=',B,HI/=B r = (0,0,1), which expresses the symbiosis 
between species 1 and 2, while species 3 remains competitive.  

Furthermore, in analogy to the external inputs that could stabilize chaotic neu-
ral networks (e.g., [20][21]), the effects of external inputs q𝐸;r with agroecological con-
texts such as harvesting and application of agrochemicals, as well as the time-delayed 
feedback effects of these interventions, can be investigated. 

 Examples of these extended features of community structure and responses to 
feedback inputs are simulated in Fig. 4. The overall results imply the utility of symbiotic 
interactions and context-dependent negative feedbacks for the amelioration of produc-
tivity and stabilization of periodicity in agroecological contexts. 

 
Fig. 4. Typical dynamics with symbiotic interactions and external inputs. (a): Area 1 dynamics 
with (ℎ" , α) = (0.1, 0), with competitive interactions W (26) and its modified W’ (27) with sym-
biotic interactions between the species 1 and 2. (b): Area 2 dynamics with (ℎ" , α) = (0.48, 300) 
and W, using 𝐾$ = 𝐾 = 100 and 𝐾$ = 𝐾’ = 10𝐾 for the representation of maximum growth rate 
of species with physiological and ecological optima, respectively, under a marginal environment 
in (20). (c): Area 1 dynamics with (ℎ" , α) = (0.1, 0) and W’, with the negative external inputs 
that represent the thinning harvest of the crop species 1: if 𝑥%(𝑡) = 𝐾 then 𝐸%(𝑡 + 1) = −4𝑥%(𝑡); 
and suppression of the weed species 2: if 𝑥&(𝑡) ≥ K/100 then 𝐸&(𝑡 + 1) = −1.75𝑥&(𝑡); which 
produce periodic dynamics close to actual harvesting and weeding cycles. (d): Area 4 dynamics 
with (ℎ" , α) = (0.15, 7000) with W’, with time-delayed negative external inputs to the species 
1&2: 𝐸$(𝑡 + 1) = −500H𝑥$(𝑡) − 𝑥$(𝑡 − 1)I, 𝑖 = 1,2, which increases the stability of the cha-
otic orbits. The feedback parameters were chosen for the visibility of plots. 

3 Elementary ultra-discrete automaton 

Although it is technically difficult to ultra-discretize CEN (25), the complexity of CEN 
can be essentially reduced to the dynamics of the single chaotic neuron model [9], 
which may be possible to further explore essential underlying structure using the ultra-
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discretized sigmoidal map (17). Here we consider the following ultra-discrete automa-
ton that further incorporates self-recurrent refractoriness in 𝑆6#𝑋	(𝑡)(: 

         Ultra-discretized sigmoidal map with refractoriness 𝑆"#𝑋	(𝑡)(:  

 𝑋(𝑡 + 1) = 𝜇 +𝑋	(𝑡) + 𝐴 −	𝑚𝑎𝑥 �0, 𝑋(𝑡) − 𝐵 +𝑚𝑎𝑥[0, 𝑋(𝑡) − 𝐶]�.,  (28) 

where 0 < 𝐴, 𝐵 < 𝐾, 𝐴 + 𝐵 = 𝐾, 𝐶 ≥ (𝜇 − 1)𝐾. The natural number parameter 𝜇 is 
inspired by the classical tent map that exhibits a fully developed chaotic regime in 𝜇 =
2, and we later show that (28) produces orbital instability when 𝜇 ≥ 2. At the limit of 
𝐴 ⟶ 0 with the parameter range 0 < 𝜇 ≤ 2, (28) converges to the tent map on the in-
terval [0, B+C] if 𝐵 ≥ 𝐶. In the case of 𝐵 < 𝐶, a plateau 𝑋(𝑡 + 1) = 𝜇𝐾  exists in the 
return map (e.g., Fig. 5 (b)), which converges plural orbits of 𝑋(𝑡) into a single value 
𝜇𝐾. 
 The incorporation of refractoriness in (28) is similar to the nested 𝑚𝑎𝑥( ) 
operations proposed in the ultra-discretized model of cryptic oscillations in Lotka-
Volterra equations with additional negative feedbacks using Holling’s disc equation 
[22]. Indeed, the type Ⅲ disc equation is qualitatively similar to the sigmoid function, 
and the type I disc equation exactly matches the ultra-discretized sigmoidal map (20) 
(see Fig. 6 Top). 
 The dynamics of (28) are analyzed in Fig. 5. Typical cases that exhibit unsta-
ble limit cycles were simulated with 𝜇 = 1 in (a) and 𝜇 = 2 in (b), with the periodicity 
analysis of 𝜇 = 2 in (c) and actual dynamics in (d). Since deterministic chaos on the set 
of real values is known to contain infinite numbers of unstable limit cycles, i.e., the 
skeleton of chaos [23], the unstable limit cycles that remain in the ultra-discretized 
models could be considered as the essential mathematical structure of chaos that is pre-
served in the ultra-discretized limit. In (e), the local temporal stability of a trajectory 
was judged with an ultra-discrete version of the Lyapunov exponent, namely the one-
sided local Lyapunov exponent (LE) defined as follows: 

 𝐿𝐸#𝑋(𝑡)( ≔ log#�𝑆"#𝑋	(𝑡)( − 𝑆"(𝑋	(𝑡) + 1)�(.  (29) 

This means that the one-sided digital perturbation (+1) to the variable 𝑋	(𝑡) is ampli-
fied in 𝑡 + 1 if 𝐿𝐸 > 0, diminished to zero if 𝐿𝐸 = −∞ < 0, and remains invariant if 
𝐿𝐸 = 0. Note that 𝐿𝐸 = 0 if 𝜇 = 1, and 𝐿𝐸 ≠ 0 if 𝜇 ≥ 2 in (28). Therefore, 𝜇 ≥ 2 
could be also considered as providing an ultra-discretized analog of the logistic map 
(2), since the smooth interpolation of (28) with a real-value resolution qualitatively 
converges the dynamics to that of (2). A multi-dimensional spectrum 𝐿𝐸:#𝑿(𝑡)( 
(1,… , 𝑖, … , 𝑛) can be defined on the vector variable 𝑿(𝑡) = #𝑋'(𝑡), … , 𝑋>(𝑡)( and its 
ultra-discrete map 𝑿(𝑡 + 1) = 𝐹#𝑿(𝑡)( using the i-th row of the n-dimensional iden-
tity matrix 𝐼:, such that 

 𝐿𝐸:#𝑿(𝑡)( ≔ log#�𝐹#𝑿	(𝑡)( − 𝐹(𝑿	(𝑡) + 𝐼:)�(.  (30) 

Since ultra-discretized models are known to form a max-plus algebra that can 
be qualitatively considered as the transformation of additions (+) and multiplications 
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(×) in the original model into the 𝑚𝑎𝑥(∙) and plus (+) operations, respectively, the 
coupled version of (28) could be proposed as follows: 
        𝐹#𝑋(𝑡), 𝑋((𝑡), 𝑋0(𝑡)( = 𝑚𝑎𝑥[𝑋	(𝑡) + 𝐴, 𝑋((𝑡) + 𝐴(] 

 −	𝑚𝑎𝑥 �0,𝑚𝑎𝑥[𝑋	(𝑡) − B, 𝑋0(𝑡) − 𝐵0] + 𝑚𝑎𝑥[0, 𝑋(𝑡) − 𝐶]�,  (31) 

       𝑋(𝑡 + 1) = max`0, 𝜇𝐹#𝑋(𝑡), 𝑋((𝑡), 𝑋0(𝑡)(a,  (32) 

where 𝑋((𝑡) and 𝐴( > 0 represent a positively interacting term and 𝑋0(𝑡) and 𝐵0 >
0 a negative one. An example of (32) producing intermittent dynamics between par-
tially stable and unstable states is simulated in Fig. 6 Bottom, which is qualitatively 
similar to the chaotic itinerancy reported both in chaotic neural networks[9][12] and 
GCML[2][24], within the constraint of periodicity subject to the possible number of 
discrete values that 𝑋(𝑡) can take on the interval [0, 𝐾 + 𝐶]. 
 The rationale behind the newly introduced models (28) and (32) can be found 
in relation to the expansion of Holling’s disc equations. Through the inverse transfor-
mation of ultradiscretization, we can obtain the underlying discrete model of (32) as 
follows, with the parameters 𝑎, 𝑎( > 0 and 0 < 𝑏, 𝑏0, 𝑐 < 1:  

	 𝑥(𝑡 + 1) = 1 +
)4"($)51()2J"2 ($)K

1

'(L*4"($)5
1
(*%J"% ($)K

1
MJ'(E4"($)5

1K
	. (33) 

This model reduces to a single uncoupled element that corresponds to the inverse ultra-
discretization of (28), such as 

 𝑥(𝑡 + 1) = )4"($)5
1

'(*4"($)5
1J'(E4"($)5

1K
 . (34) 

On the other hand, the three types of Holling’s disc equations ℋ′(∙)	and	ℋ(∙) 
as a discrete-time system of the variable 𝑦(𝑡) ≥ 0 can be formulated as follows (e.g., 
[25]), using the parameters a, b and K: 

Type I:  𝑦(𝑡 + 1) = ℋ′#𝑦(𝑡)(:= min#𝐾, 𝑎𝑦(𝑡)(    (35) 
Type Ⅱ and Ⅲ:   

  𝑦(𝑡 + 1) = ℋ#𝑦(𝑡)(:= )4?($)5
1

'(*4?($)51
 ,  

where 𝜇 = 1 (type Ⅱ), 𝜇 > 1 (type Ⅲ).   (36) 
The model (34) can therefore be interpreted as the expansion of types Ⅱ and Ⅲ incor-
porating refractoriness at the saturation stage of 𝑦(𝑡), which we call type Ⅱ-R and Ⅲ-
R, respectively: 

Type Ⅱ-R and Ⅲ-R:   

𝑦(𝑡 + 1) = ℋN#𝑦(𝑡)(:=
)4?($)5

1

'(*4?($)5
1J'(E4?($)5

1K
 ,  

where 𝜇 = 1 (type Ⅱ-R), 𝜇 > 1 (type Ⅲ-R).  (37) 
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Additionally, we extract a typical non-linear response of single chaotic neuron based 
on (24) as follows, using 𝑦(𝑡)	as the internal state of sigmoidal output 𝑥(𝑡): 

 𝑦(𝑡 + 1) = 𝜂(𝑡 + 1) + 𝜁(𝑡 + 1), (38) 

 𝜂(𝑡 + 1) = ℎF 𝜂(𝑡) + 𝑤𝑥(𝑡) + 𝑤6𝑥6(𝑡), (39) 

 𝜁(𝑡 + 1) = ℎ+ 𝜁(𝑡) − 𝛼𝑥(𝑡), (40) 

 𝑥(𝑡 + 1) = 	𝑆(𝑦(𝑡 + 1); 𝑟, 𝜃, 𝐾), (41) 

where w and w’ are positive connection coefficients and 𝑥6(𝑡) is the output from an-
other neuron. 
 The relationships between type I, Ⅱ, Ⅲ, Ⅱ-R, Ⅲ-R and the chaotic neuron 
(38)-(41) are depicted in Fig. 6 Top, which shows qualitative correspondence between 
type Ⅲ-R and the chaotic neuron.  
 

Fig. 5. Dynamics of the ultra-discretized sigmoidal map with refractoriness 𝑆"H𝑋	(𝑡)I (28). In-
terval maps between 𝑋(𝑡) and 𝑋(𝑡 + 1) are depicted in (a): with parameters (𝜇, 𝐴, 𝐵, 𝐶, 𝐾) =
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(1, 20, 80, 0, 100) that can be considered as an ultra-discretized analog of the tent map, and (b):	
(𝜇, 𝐴, 𝐵, 𝐶, 𝐾) = (2, 20, 80, 100, 100)	as	that of the logistic map. In (a) and (b), the initial val-
ues were taken for all 𝑋(𝑡 = 0) = [0, 200], which converge to unstable limit cycles (red spi-
derweb plot) and partially stable limit cycles (blue) with respect to the stability 𝐿𝐸(𝑋(𝑡)). (c): 
Periodicity of the model (b) with respect to the initial values 𝑋(𝑡 = 0) = [0, 200]. (d): Tem-
poral dynamics 𝑋(𝑡) of the model (b) from 𝑡 = 0 to 100 and the initial values 𝑋(𝑡 = 0) =

[0, 200], with a color gradient from cyan (𝑋(𝑡) = 0) to magenta (𝑋(𝑡) = 200). (e) The same 
dynamics as (d) with the color distinction between 𝐿𝐸(𝑋(𝑡)) > 0 (red) and 𝐿𝐸(𝑋(𝑡)) < 0 

(blue). The blue regions in (e) correspond to the plateau 𝑋(𝑡 + 1) = 𝜇𝐾 = 200	in	(b),	except	
the	right	endpoint	that	gives	𝐿𝐸(𝑋(𝑡) = 100) > 0. 

 
Fig. 6. Top: Relationship between Holling’s disc equations (35)(36) and their expanded models 
(37) (38) corresponding to 𝑆"H𝑋	(𝑡)I (28), and chaotic neuron model (38)-(41). Parameters ℎ) =
ℎ" = 0, 𝑥*(𝑡) = 𝑆(𝑦′(𝑡); 𝑟, 𝜃, 𝐾),  𝑦*(𝑡) = 𝑟′𝑦(𝑡), 𝑟′ > 1 are used for the simulation of the cha-
otic neuron. Parameter values were chosen for visibility. Bottom: Example dynamics of coupled 
𝑆"H𝑋	(𝑡)I (32). Three automata (blue, red, and green) are negatively coupled with one-directional 
circular connections, i.e. 𝐴+ = 0 and 𝐵, > 0, by which dynamics of blue, red, and green nega-
tively affect red, green, and blue, respectively. Solid circles represent stable points concerning 
the three-dimensional version of 𝐿𝐸  (30). Common parameters are 𝐾 = 𝐶 = 1000, and 𝐴 =
(2, 7, 20), 𝐵 = (998, 993, 980)and 𝐵, = (980, 998, 993) are used for blue, red, and green au-
tomata, respectively. 



15 

4 Discussion 

CEN (25) is presented as the reinterpretation of chaotic neural networks from agroeco-
logical perspectives, which essentially employs the same model for different phenom-
enological classifications of the dynamics such as Area 1-4 in Fig. 2. Only simple lin-
earized interactions were simulated in this article, and it can incorporate other non-
linearity specific to ecosystems using the general form of interactions (18) and (21), 
such that 

 𝑥:(𝑡 + 1) = 𝑆 +∑ 𝑣:; 9𝐻({𝑥:(𝑡 − 𝑑)}!=/$ ); 𝐻 +q𝑥;(𝑡 − 𝑑)r!=/
$

.;>
;=' ; 𝑟: , 𝜃: , 𝐾:.. (42) 

In contrast to the differential equation models, the merit of using discrete and ultra-
discrete models is the facility of calculation and practicality of incorporation of many 
realistic processes and interactions, such as the reproduction of individual organisms 
and the occurrence of human interventions, which are essentially discrete phenomena. 
Instead of modeling every detail with a real-value resolution, discrete models can re-
duce non-essential features for the effective abstraction with an appropriate resolution. 

On the other hand, proper discretization of a continuous model cannot be a pri-
ori defined with a fixed formula and requires thorough mathematical comparison. For 
example, consider a typical Lotka-Volterra equation with a conserved quantity 𝑄O ≔
	𝑐𝑥 + 𝑏𝑦 − 𝑑 log 𝑥 − 𝑎 log 𝑦 as follows: 

 !"
!$
= 𝑎𝑥 − 𝑏𝑥𝑦, !?

!$
= 𝑐𝑥𝑦 − 𝑑𝑦. (43) 

Then the following coupled discrete-time maps could be derived using a variant of (4): 

 𝑥(𝑡 + 1) = ('(,$))"($)
'(,$*?($)

, 𝑦(𝑡 + 1) = 4'(,$E"($)5?($)
'(,$!

. (44) 

Through the appropriate parameters transformation and the limit operation analogous 
to (5)-(9), it is possible to derive the following ultra-discretized form: 

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝐴 −max[0, 𝑌(𝑡) − 𝐵], 

         𝑌(𝑡 + 1) = max[0, 𝑋(𝑡) + C] + 	𝑌(𝑡) − 𝐷. (45) 

However, the models (44) and (45) do not reproduce the closed limit cycle of the orig-
inal differential equations (43), but rather express divergent oscillation (i.e., expanding 
spirals on x-y and X-Y planes, results not shown) as the discretization time step 𝛥𝑡 in-
creases. It is therefore necessary to consider other forms of discretization to examine 
the property of the integrable system (43) based on the conserved quantity [26].   

The difficulty of interpreting discrete models also exists in quantitative analysis, 
both in temporal scales and variable values. Parameter fitting and its optimization meth-
ods need to be explored according to the focus of the research. On the other hand, robust 
system-level features such as the typology of ecological regime shifts and scale-free 
phenomena (e.g., [19][27]) could be more accessible with qualitative analysis, which 
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may further contribute to the management model of essential ecosystem services and 
hierarchical modeling of the comprehensive biosphere. 

The ultra-discrete automaton (32) was actually inspired by unsuccessful at-
tempts to directly ultra-discretize CEN (25). It is proposed as a synthetic model to serve 
as a stepstone for further investigation, in the same line with the arbitrary modification 
of dLV to derive a simple ultra-discrete automaton with intermittent dynamics such as 
in [22]. Nevertheless, the proposed model captures essential characteristics of coupled 
chaotic systems concerning the intermittent fluctuation of orbital stability commonly 
reported in coupled logistic maps and chaotic neural networks. It should be noted that 
the original chaotic neuron model was not based on the rigorous discretization of dif-
ferential equation neuron model (such as Hodgkin-Huxley and FitzHugh-Nagumo 
models) either, but rather based on a qualitative observation using a priori defined dis-
crete-time formal neuron model [9]. Since the proposed ultra-discrete model (32) con-
serves essential characteristics of chaos that are generally not integrable, further analy-
sis needs to extend the methodology beyond the conventional framework restricted to 
the conserved quantity of integrable non-linear systems.  

The commonality of dynamics analyzed between neural networks and ecologi-
cal models could potentially provide a starting point for the integration of knowledge 
between the vast non-linear classification capacity of deep learning (e.g., [28]) and the 
complexity of ecosystem dynamics that could provide access to untapped utilities in 
agroecology. 

5 Conclusion 

We investigated the relationship between the logistic equation and the sigmoidal map 
with the light of ultradiscretization that conserves the essential dynamics including 
chaos. The results suggest that the conventional logistic map (2) may not be appropriate 
to interpret as a simple discretized form of the logistic equation (1), but rather as the 
one that belongs to a class of model which can be better presented with a self-recurrent 
sigmoidal function incorporating refractoriness. This insight will further bring clarifi-
cation in ecological and complex systems modeling on the distinction between tech-
nical by-products and computational rationales for mathematically sound simulations. 
An ultra-discrete model based on the expansion of Holling's disc equations was pro-
posed (32), which qualitatively captured the characteristics of intermittent dynamics 
known as chaotic itinerancy commonly reported in chaotic neural networks and GCML. 
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